The role and relevance of taxonomy in the conservation and utilisation of Australian Acacias

BRUCE R. MASLIN

Department of Conservation and Land Management, Locked Bag 104, Bentley Delivery Centre, Western Australia 6983 Email: brucem@calm.wa.gov.au

SUMMARY

In biology, taxonomy is defined as the science of delimiting organisms, naming them and determining their relationships. It is the foundation upon which all biological sciences rely. Acacia is the largest genus of flowering plants in Australia (comprising almost 1,000 species) and is an important component of many ecosystems, particularly in arid and semi-arid areas. The species exhibit considerable morphological, ecological and biological variation and as such offer considerable scope for economic, social and commercial utilisation. In order to undertake effective conservation, utilisation and management of this enormous resource it is essential to have meaningfully defined, and named, biological entities (e.g. species and infraspecific taxa). The provision of names through taxonomic research is fundamentally important because names are the ‘hooks’ by which information about taxa is stored, retrieved and exchanged. Taxonomic keys are the tools that enable us to identify specimens. In a large genus like Acacia, electronic multi-access keys have advantages over conventional paper-based keys. Voucher specimens, which enable names to be verified, provide an important mechanism for protecting the value of information assembled for taxa. The implications for Australia of the proposal to divide Acacia into five genera are discussed briefly.

INTRODUCTION

It is not coincidental that the first paper in these proceedings of the Dalwallinu Acacia Symposium deals with taxonomy. As discussed below, taxonomy is the foundation upon which all biological sciences rely because, in the absence of classifying organisms and naming them, biology has nothing to work with. Indeed, none of the papers presented in this volume would have been possible unless Acacia species had been discriminated and named.

There are almost 1,000 described species of Acacia in Australia (Maslin 2001b and 2001c) and an estimated 100 or so remain undescribed. This is an enormous resource which offers considerable potential for economic, social and environmental utilisation, but it is important that the species are conserved effectively and managed sustainably. It is the aim of this paper to examine the role of taxonomy in achieving these goals.

Acacia is ubiquitous in Australia. Species of this genus are represented in almost all major terrestrial habitats and they form a conspicuous, dominant element of many ecosystems, particularly in arid and semi-arid areas. The greatest species-richness occurs in the flat, edaphically complex, semi-arid wheatbelt region of south-west Western Australia (Hnatiuk & Maslin 1988). This area is located within the Transitional Rainfall Zone (Hopper 1979), so named because it lies between the arid interior of the continent and the temperate forest region near the south-western coast. The richness here may be illustrated by the fact that within a 100-kilometre radius of Dalwallinu there are about 185 species of Acacia, this being the same number that occurs in North and South America combined, and more than occurs on the entire continent of Africa where 144 species are recorded (Maslin et al. in press). The other principal area of species richness lies south of the Tropic of Capricorn in eastern Australia and is associated with the rocky tablelands of the Great Dividing Range. Although species numbers decline in the Arid Zone, acacias are often a more conspicuous and dominant element of the landscape there than elsewhere. Here for example we find the Mulga lands dominated by species of the A. aneura complex (Miller et al. this proceedings).

Besides the high number of species, acacias show great morphological, ecological and biological variation and so offer considerable scope for economic, social and environmental utilisation. Understanding these species, and in particular knowing how they might assist in providing solutions to the very serious problem of land degradation that has occurred in many agricultural regions, was a major theme of the Dalwallinu Symposium. Biological attributes of Acacia such as their diversity in growth form, longevity, coppicing or suckering ability, and their adaptation to a wide range of soil types and habitats, render them well-suited to a wide range of uses. Furthermore, they have the ability to fix atmospheric nitrogen, are usually easy to germinate and grow, and generally show good survival and rapid growth rates under cultivation.

Australian acacias are widely utilised, especially abroad (for reviews see Idgley and Turnbull in prep.; McDonnell et al. 2001; Turnbull et al. 1998; Searle 1995, 1996; Thomson et al. 1994). They are used for a range of purposes but in particular as a source of wood products (e.g. construction and high-value timber, pulp and
fuelwood), tannin, edible seeds, fodder and for land amelioration. Today, Australian Acacia species are grown in about 70 countries where they cover over 2 million hectares. As summarised by Midgley and Turnbull (in prep.) the most widely cultivated species are A. mearnsii for tannin, fuelwood and charcoal (c. 300 000 ha. in South Africa, Brazil, China and Vietnam), A. saligna for fuelwood, fodder and land amelioration (over 50 000 ha. in North Africa, the Middle East, western Asia and Chile), A. mangium for paper pulp and timber (over 800 000 ha. in Indonesia and Malaysia), A. crassicarpa for paper pulp and timber (about 50 000 ha. in Indonesia and Vietnam) and A. cœle as a human food in India and sub-saharan Africa. In developing countries the demand for fuelwood is increasing as populations grow, and A. cœle species are generally considered to be good fuel sources with high calorific values and biomass production (Thomson et al. 1994). In Australia, A. cœle is largely an under-exploited resource. Although some commercial timber is gained from species such as A. melanoxylon (Blackwood; see Searle 1996) and A. cœle (Brown Salwood; see MCdonald and M. aulacocarpa 2000), most species grown in this country are used in amenity and land amelioration programs (McDonald et al. 2001). There is, however, a growing interest in exploring the potential for a more comprehensive use of A. cœle in Australia, especially as widespread commercial crops in southern agricultural regions for salinity control (Bartle et al. this proceedings).

WHAT IS TAXONOMY?

In biology, taxonomy is essentially the science of delimiting organisms, naming them, and determining their relationships. Taxonomy is the foundation upon which all biological sciences rely, but very few people understand what taxonomists actually do. As noted by Vane-Wright (1996), there is a need to both demystify taxonomy and make taxonomic products more readily accessible, not only to the scientific community but also to non-specialist users. In so doing this science may become better understood and appreciated, which in turn may lead to better resourcing of this crucial discipline.

Taxonomists assemble information about organisms from many sources and employ various methods to analyse and synthesise these data to arrive at a definition and classification of taxa, to apply names to them, and to develop generalised insights into their phylogeny and evolution. In other words, taxonomists:

- analyse natural variation to delimit and name taxa;
- provide a means for identifying taxa; and
- arrange taxa into predictive classification systems.

These points form a convenient framework for discussing the significance of taxonomy in the context of the conservation and utilisation of Acacia. It should be remembered, however, that taxonomists also establish systems for assembling and disseminating knowledge about taxa, as discussed below, provide scientific verification for their work through a system of vouchering.

Delimitation and naming: the determination of boundaries between taxa and the application of names to the biological entities that are recognised.

The circumscription and naming of meaningful biological entities is at the core of the scientific discipline of taxonomy. Providing names (whether formal or informal) is of fundamental importance for biology because names enable us to communicate and exchange information about taxa. In fact, in the absence of names, biology has nothing to work with, the taxa for this purpose do not exist. Names are not merely tags or labels, however, rather they are the principal ‘hooks’ by which information about an organism is stored and retrieved. If taxa are poorly defined, or if the names applied to them are incorrect, then the information that is assembled and disseminated is likely to be wrong, or at least its value will be diminished. While it is most desirable that the taxa be formally named in accordance with the International Code of Botanical Nomenclature (Greuter et al. 2000), there are circumstances where time and/ or resources are limiting, and then an interim arrangement of informal ‘phrase names’ is acceptable. Therefore, the first imperative for effective conservation, utilisation and management of any biological organism is the provision of meaningfully circumscribed and accurately named taxa.

These points are well illustrated by the following examples drawn from recent studies in Acacia.

In recent years certain tropical Australian acacias have assumed considerable commercial importance as sources of pulp and high-value timber, principally in south-east Asia. The main species being grown are A. mangium, A. auriculiformis, A. crassicarpa and the hybrid A. auriculiformis × mangium (Turnbull et al. 1998; Mc Donald et al. 2001; Midgley and Turnbull in prep.). However, a less well-known tropical species, A. aulacocarpa, which was also commonly grown in forestry field trials in south-east Asia, showed very variable performance, suggesting that more than one taxon was included under the name. A subsequent revision of the A. aulacocarpa group by M. McDonald and M. aulacocarpa (2000) revealed that there are, in fact, six species included within what was formerly called A. aulacocarpa. Of the four new species described in that paper, three—A. cœla, A. midgleyi and A. peregrina—grow to large trees 30(-40) m tall and have potential as forestry plantation species. A. cœla aulacocarpa itself was shown to be a variable taxon, ranging from a spindly small shrub to a small tree 8(-15) m tall, that appears quite unsuitable for major forestry use. Thus, the name A. aulacocarpa had no reliable biological meaning before the taxonomic work was undertaken because encompassed by this one name were six separate species. It was not until the taxonomists had gathered, recorded and analysed data, then drawn boundaries around and named the natural biological units that a meaningful framework was provided for furthering knowledge of the taxa involved. New data, together with at least some of the previously acquired data (see
Vouchering, below), could now be referred to the appropriate species instead of being ‘pooled’ under the one name, A. aulacocarpa. Indeed, had the taxonomy of this group not been resolved there is a likelihood that the value of these data would have been greatly diminished, rendered essentially useless or even lost. It is worth noting that, just because a taxon has a name, it does not necessarily mean that the entity has precise biological meaning. The only way to ensure that taxa represent meaningful biological entities is to subject them to careful taxonomic scrutiny.

Similar examples of taxonomic resolution facilitating research and management of Acacia utilisation include:

- A. cadia, A. cowlana and related species as a source of seed for human food (Maslin and Thomson 1992; McDonald and Maslin 1997: see McDonald et al. 1996 for discussion);
- A. acuminata as a host for Sandalwood (Santalum spicatum) (Maslin et al. 1999; Brand 2002);
- A. aulacocarpa for use as fuelwood and in land rehabilitation (McDonald in prep.).

Effective conservation research and wildlife management also depend on well-defined, named taxa. This point is well illustrated by Burgman et al. (2000) in their study of almost 200 Western Australian species of Acacia that were listed on the Priority and Declared Rare Flora lists. They found that nearly a quarter of these species were neither formally described nor even informally recognised prior to 1970. This meant that neither science nor the relevant management agencies were aware of their existence until after this date. The study concluded that conservation research and setting conservation priorities depend on a sound taxonomy for, without it, conservation has nothing to work with; indeed, the first priority for conservation should be straightforward species circumscription and description.

This point can be illustrated by reference to A. bifaria, a species which in 1995 was given a formal name and which was segregated from its very similar-looking close relative, A. glaucoptera (Maslin 1995). A. aulacocarpa was shown to be reasonably uncommon and was therefore included on the Priority Flora List. It had a fairly restricted distribution and was known from populations confined largely to degraded road verges around Ravensthorpe. A. cadia glaucoptera, on the other hand, was shown to be a common species with a wide geographical distribution. It therefore did not warrant particular conservation attention. Thus, before 1995 when the two taxa were not distinguished, A. bifaria was not afforded any protection because it was included within a broadly circumscribed species, A. glaucoptera. According to Burgman et al. (2000), very few of the Acacia species then included on the Declared Rare Flora list or the Priority Flora list would have been guaranteed protection in Western Australia if the taxonomy of the Acacias had not progressed beyond that known in 1970. In other words, inadequate (or inaccurate) classifications may lead to the loss of diversity through inadequate protection.

Of course it is incumbent upon the taxonomist to do an effective job when they analyse variation and discriminate and name taxa. Unfortunately it takes time, and therefore resources, to produce good taxonomic work and the amount of resource needed depends on the size and/or complexity of the group being studied. However, it can be very costly if the taxonomy is inadequate or incorrect. In the above example of A. aulacocarpa, imagine the problems that would have occurred in future plantings had the tall tree A. cadia not been properly distinguished from the spindly A. aulacocarpa. The same applies in conservation work. Consider the potential waste of time, money and effort, and even possible legal ramifications, if species that are referred to the Declared Rare and Priority Flora lists are not ‘good’ biological entities. More often than not the amount of money spent on taxonomy is trivial compared with the benefits that are derived from the result of this work.

Identification: referring an individual specimen to a previously recognised group

Taxonomic keys are the principal means of identifying organisms. There are two basic types of key—the conventional dichotomous key that is normally produced as printed copy, and the interactive multi-access key that is produced via an electronic medium.

Conventional dichotomous keys comprise a sequence of questions that eventually lead to a name. Because of their linear structure, conventional keys suffer from a serious problem, the ‘unanswerable couplet problem’; that is, if any question in the sequence cannot be answered then further progress is blocked (Maslin and Thiele 1998). For example, consider trying to identify a plant for which you have no flowers, in a key where most of the questions relate to flower characters. Despite this problem there is certainly a place for conventional keys but they can be hard to use, especially when the number of species included is large. In these cases the key maker often has to resort to ‘cryptic’ characters that are difficult to interpret, or to combinations of characters, in order to try and guide the user to the correct answer.

There are a number of contemporary conventional keys for identifying Australian Acacias but, except the one provided in the recently published Flora of Australia (Maslin 2001), these are regional in scope, or deal with specific species complexes. Regional keys to Acacia include:

- New South Wales: Kodela and Harden (2002).
- South-eastern Australia: Costermans (1981); Tame (1992).

A key to some Australian *Acacia* species that are commonly utilised abroad is given in Maslin and McDonald (1996).

As discussed by Maslin and Thiele (1998), computer-based, interactive multi-access keys provide a solution to, or at least ameliorate, the problem of unanswerable couplets. Although multi-access keys also require users to answer questions in order to name taxa, the user chooses which questions to answer, and in what order—in other words, the user controls the identification process, rather than the key builder. Taking the example above, the multi-access key questions relating to flowers can be simply ignored and alternative ones used. Furthermore, with an interactive multi-access key the user can choose to use ‘easy’ characters early in the identification process. Most multi-access keys also allow users to select more than one answer to multiple-choice questions. This is important, because one is not forced to make a decision between qualitative character-states which, by their nature, may differ only by degrees. There are many other attractive features of interactive multi-access keys. For example:

- the computer programs can scrutinise character lists dynamically to find the best ones to use in order to identify a specimen most quickly (this is particularly useful if the user is not familiar with the group of organisms being keyed);
- suspect or wrong answers can be quickly deleted without having to backtrack laboriously through the key;
- context-sensitive help, perhaps in the form of annotated images or notes, can be provided to help with technical jargon or difficult characters;
- once an organism has been named it is simple to deliver a cluster of information about it, such as drawings, photographs, videos, sounds, distribution maps and notes.

Interactive multi-access keys are especially useful when dealing with large groups of organisms. Therefore, in a genus of the enormous size and variability of *Acacia*, electronic keying is the only way to name specimens reliably and efficiently. The recently-published electronic key WATTLE: *Acacias of Australia* (Maslin 2001c) provides interactive identification for the entire Australian *Acacia* flora. This key greatly empowers the user and makes the identification process reasonably simple.

Interactive multi-access keys need not be restricted to providing names for taxa. They can also be very effective in selecting taxa that conform with non-morphological criteria such as environmental, biological or utilisation attributes. In this way one can, for example, list all species occurring in a particular geographical region, or those suited to commercial wood production, effective as wind breaks, helpful in salinity control, and so forth. The electronic key to *Acacia* species of the Kalannie region (Maslin 1998) was constructed with environmental utilisation in mind.

Classification and phylogeny: the placement of organisms within a hierarchical system and the determination of the historical relationships between them.

Modern biological classifications are hypotheses of evolutionary relationships that aim to bring related taxa together into groups that are commonly named and that are arranged in a hierarchical fashion. An effective classification will serve as a major summary of knowledge and is also likely to embody at least some predictive power. Predictive in this context means that if a species has some quality or characteristic then other species that have the same attributes are likely to appear close to it in the classification. This has practical (and potentially very significant) implications for conservation and resource management. For example, the grouping of genetically related taxa may facilitate the search for desirable chemical or biological attributes. Or, by providing a framework that reflects the genetic diversity within a taxon (e.g. a genus), a classification can be a useful tool for assessing biodiversity and for setting conservation priorities. Raven (1995) put the crucial role of classification in the following way: ‘. . . it is ultimately the scientific process of classification—the grouping of organisms into meaningful units—that makes possible everything else in systematic, evolutionary and environmental biology, and which ultimately gives meaning to all of biology.’ In Raven’s sense the term classification applies to all levels of the taxonomic hierarchy, i.e. species, genera, families etc., in the discussions below, I restrict my use of the term to the genus and infrageneric levels (e.g. subgenus, series, section) in *Acacia*.

At the infrageneric level it is most regrettable that there is no meaningful classification for the ‘Australian group’ of *Acacia*, namely, subgenus Phyllodinae which includes some 960 species. To some extent this shortcoming has constrained effective utilisation and conservation work, because people requiring knowledge of species relationships must either search literature for the relevant information or rely on the few taxonomic specialists to nominate presumed close relatives. In both these cases the information obtained can be somewhat limiting. The most generally used classification for subg. Phyllodinae is that of Pedley (1978) in which seven sections are recognised. This classification represents a good, pragmatic attempt at rationalising earlier schemes by Bentham (1842, 1864, 1875) and Vassal (1972)—the relationship between these various schemes is discussed and illustrated in a number of publications, e.g. Pedley (1987a), Maslin (1989), Chappill and Maslin (1995) and Maslin (2001a). While Pedley’s scheme has certainly been a useful framework it is largely artificial, scarcely any of the sections being monophyletic (see Maslin et al. in press). A consequence of this is that the predictive power of the classification is diminished. Furthermore, 855 species (more than 80% of total within the subgenus) are contained in just three large sections, namely, Phyllodinae, Plurinerves and Juliflorae. Apart from being non-monophyletic each of these sections is simply too large to
show meaningful relationships between species. What is needed is a classification that aggregates related species into smaller groups that are formally named and arranged in a hierarchical framework that reflects their evolutionary relationships.

Undoubtedly, molecular information will prove pivotal to understanding evolutionary relationships between species of subgenus Phyllodineae and, consequently, to the establishment of a meaningful classification for the group. Recent DNA sequence data from Miller et al. (in press) and Murphy et al. (2000 and in prep.) are generating new insights into species relationships, but to date these studies have involved only about 15% of the species comprising the subgenus. The challenge for the future is for these (very expensive) studies to be expanded to include more of the taxonomically ‘critical’ species (Maslin and Stirton 1998), then for taxonomists to correlate the molecular findings with morphological characteristics to produce a functional classification.

Despite the above-mentioned constraints there does exist for Acacia a body of knowledge of species relationships and this has facilitated a number of recent utilisation and conservation projects. For example, such knowledge was crucial in the assessment and ranking of about 350 Acacia species from the temperate dry zone of Australia for their potential as a source of seed for human consumption (Maslin et al. 1998). Similarly, an assessment of the 500-odd taxa of Acacia from the South-West Botanical Province of W.A. was undertaken by the author recently to identify deep-rooted native species that might be suitable for widespread planting in the region for salinity control (Bartle et al. this proceedings). This task was greatly facilitated by having a knowledge of species relationships because, when a species was located that possessed potentially desirable characteristics (e.g. pale heartwood), it immediately focused the search on its close relatives to see if they, too, shared these attributes.

Other examples of knowledge of species relationships aiding work on utilisation of Acacia is seen in Sandalwood (Santalum spicatum) host selection studies involving Acacia acuminata (Maslin et al. 1999; Broadhurst and Coates 2002; Byrne et al. 2002; Byrne this proceedings) and in the domestication research involving multipurpose utilisation of tropical dry-zone Acacia species (McDonald et al. 1994).

In conservation research the study of Buist et al. (this proceedings) is a good example of how critical phylogenetic knowledge can be. This study aims to determine how ecological and genetic characters contribute to an understanding of rarity by comparing rare, geographically restricted species with their common, widespread closest relatives. The work is dependent upon taxonomic relationships having been determined for the species-pairs under study, namely A. lobulata and A. verrucula (Cowan and Maslin 1990), A. anfractus (Maslin 1976) and A. scophanes (Maslin 1977).

At the generic level it is now evident that, in the light of recent molecular and morphological evidence, Acacia is polyphyletic and cannot be maintained as a single genus. This means that the genus, as currently conceived, will be divided into a number of genera, and this will have significant and practical implications worldwide. Although splitting Acacia will improve the taxonomy of the group there will be unavoidable and unfortunate nomenclatural consequences. As currently defined, Acacia is a cosmopolitan genus of more than 1350 species placed in three large subgenera, namely, subgenus Acacia (c. 160 species, pantropical), subgenus Culinifer (203 species, pantropical) and subgenus Phyllodineae (960 species, largely confined to Australia). Pedley (1986) proposed that these three subgenera should be treated as distinct genera, namely, Acacia, Senegalia and Racosperma respectively. Although Pedley’s proposal was not taken up (see Maslin 1987, 1989, also see Pedley 1987a & 1989 for defence of his scheme), there has been significant morphological and molecular research over the past 15 years and it is now apparent that the genus will have to be divided into at least five genera (for discussion see Maslin et al. in press). These genera correspond to Pedley’s groups except that the New World component of Senegalia will be divided into three genera. This new taxonomy is an improvement over the existing classification because it is saying that most of the ‘Acacias’ that occur, for example, in Australia are significantly different from those in Africa, Asia and the Americas.

This change will improve our ability to communicate meaningful information when we talk about ‘Acacia’. However, because there are internationally accepted rules that govern what names must be applied to each of the five genera, there is a possibility that the generic name of most ‘Australian acacias’ may be changed, perhaps to Racosperma. The group comprising the ‘Australian acacias’ is not only by far the largest within the genus (almost 1,000 species), it is also the one that is utilised most extensively for commercial, social and environmental purposes. Therefore, there will be widespread global impact affecting many people if species of the ‘Australian group’ are given a new generic name. Within Australia such a change would cause many organisations and individuals to incur significant costs by having to modify information storage and retrieval systems. It is for this kind of reason, and in the interest of nomenclatural clarity and stability, that Maslin et al. (in prep.) are preparing a proposal to have the name Acacia retained for the ‘Australian group’. This proposal will be considered by an international committee which governs botanical nomenclature and, given the urgency of this matter, it is hoped that it will not take long for a decision to be made one way or the other. It is clear from the above discussion that taxonomic classifications may have significant impact, both socially and economically, and taxonomists need to be very mindful of these sorts of issues.

Vouchering: collection and preservation of specimens representing an organism or taxon under study, therefore enabling verification of its identity

Heddberg (1979) noted that a basic requirement of scientific investigation is that the results should be verifiable. It must be possible for other researchers to check
the validity of the work by repeating experiments or observations. This implies that any biological material used for whatever purpose must be named reliably. The way to verify that names so used are correct is to examine the (voucher) specimen on which that name is based. If voucher specimens are not cited in research it can seriously diminish the value of information, because there may be no way to relate the data to a particular taxon. Given the obvious benefits of vouchering it is surprising that it is so often not done (see Hopper and Brown 2001 for examples).

Vouchering is especially relevant when a polymorphic species is divided, because verification of names through the examination of voucher specimens usually enables information to be correctly related to the appropriate segregated taxon. An excellent example of this is the study of *A. aulacocarpa* discussed above. For many years the Australian Tree Seed Centre (CSIRO Forestry and Forest Products) collected seed of ‘A. aulacocarpa’ from Queensland and Papua New Guinea and distributed it, as numbered seedlots, for use in forestry plantation research both within Australia and abroad (principally south-east Asia). Seedlot numbers were linked to herbarium voucher specimens which were collected from the same plants as the seed and subsequently deposited in herbaria for safe keeping and future reference. As discussed above, McDonald and Maslin (2000) showed that the name *A. aulacocarpa* had been widely misapplied, and what was thought to be a single species in fact comprised seven distinct taxa. Because of the good vouchering practice by ATSC it was possible to publish a list of seedlot numbers showing the new names that applied to them, thus enabling users worldwide to align their operations with the new nomenclature (McDonald and Maslin 1998). Over the years a substantial body of research on the new nomenclature (McDonald and Maslin 1998) produced a comprehensive annotated bibliography of these publications. Unfortunately, voucher specimens were not cited all in these works. Therefore, while it is possible in some cases to relate the previously published information to one or other of the seven taxa recognised by McDonald and Maslin, there are many cases where it is not possible. In these latter cases the value of the previously published data is greatly reduced, or in some cases even rendered useless, because it is not known to what segregate of *A. aulacocarpa* they refer. This situation, which could have been avoided by citation of voucher specimens, is most unfortunate, not only because of the loss of information but also because it is wasteful of resources, given the expense of conducting the research in the first place.

Despite the importance of vouchers, it must be remembered that it is very expensive to collect and preserve voucher specimens: $41.89 per specimen was cited by Armstrong (1992) as the cost from collection to final placement in a herbarium but the standard measure now used by herbaria has now increased to around $52. Therefore, in some cases at least alternative strategies to retaining a voucher specimen may have to be considered to off-set at least the costs associated with specimen preservation. This applies particularly to studies that involve multiple sampling of the same taxon within a single population. For example, population genetic studies may require 10 or more individuals from numerous populations in order to generate a meaningful set of information. In such cases it may be prohibitively costly and physically impractical to retain all voucher specimens that are collected: photographing or scanning the specimens may be appropriate alternatives in these circumstances (even though there are costs associated with establishing and maintaining photographic and electronic records). There may also be situations where it is not necessary to keep voucher specimens indefinitely. These are important issues that confront and challenge herbarium managers.

CONCLUSION

It is clear that effective conservation and utilisation of *Acacia* depend upon having a sound taxonomy. In the first instance it is absolutely essential that meaningful biological entities be delineated and described accurately. These entities, whatever their rank (genus, species, variety etc.), are the basic building blocks upon which both conservation and utilisation rest. Secondly, it is essential that the biological entities be named because there is no other way of communicating about them. In fact, in the absence of a name the entities for this purpose do not exist and are therefore not available for consideration in either conservation or utilisation. While it is most desirable that taxa be formally named in accordance with the International Code of Botanical Nomenclature, in circumstances where time and/or resources are limiting then an acceptable interim arrangement is to use informal ‘phrase names’. Thirdly, it is essential that taxonomists provide effective means for identifying taxa, and this usually means constructing workable keys for identification. Once taxa are accurately identified then users can assemble, access and disseminate information about them. Fourthly, it is essential that organisms be classified into meaningful units (e.g. species, genus, family) because this provides the framework that makes investigation of organisms possible. It is therefore clear that neither conservation nor utilisation of *Acacia* (or any other biological organism) can proceed in the absence of sound taxonomic practices.
REFERENCES

Brand, J.E. (2002). Review of the influence of Acacia species on the establishment of Sandalwood (Santalum spicatum) in Western Australia. This Proceedings.

Byrne, M., Macdonald, B. and Coates, D.J. (2002). Phylogeographic patterns and high cpDNA diversity within the Acacia acuminata (Leguminosae:Mimosoideae) complex in Western Australia. Journal of Evolutionary Biology 15, 567-587

McDonald, M.W. (in prep.). Revision of Acacia tumida (Leguminosae: Mimosoideae) and close allies, including the description of three rare taxa.

The role an relevance of taxonomy in the conservation and utilisation of Australian Acacias

Murphy, D.J., Miller, J.T., Bayer, R.J. and Ladiges, P.Y. (in prep.). Molecular phylogeny of Acacia subgenus Phyllodineae (Mimosoideae: Leguminosae) based on DNA sequences of the internal transcribed spacer region.

